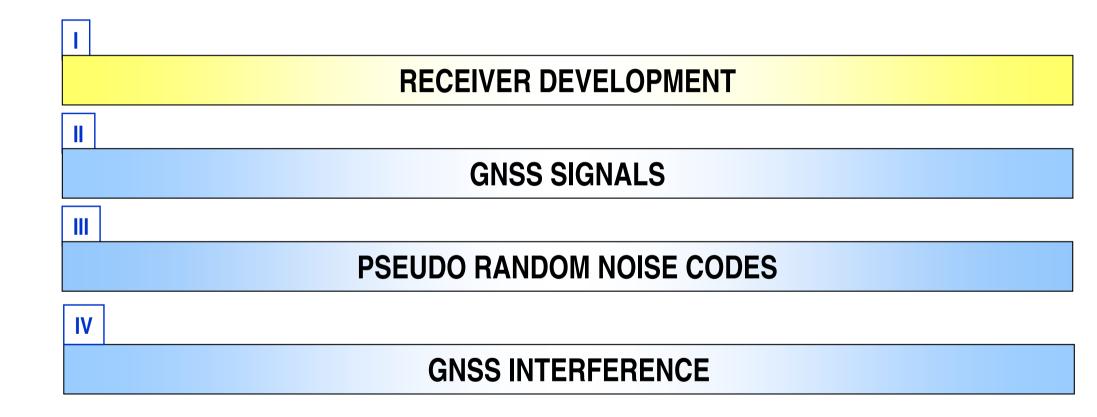
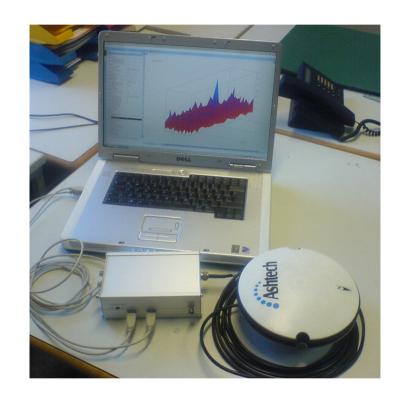
Presentation for:


14th GNSS Workshop November 01, 2007 Jeju Island, Korea

RECEIVER DEVELOPMENT, SIGNALS, CODES AND INTERFERENCE

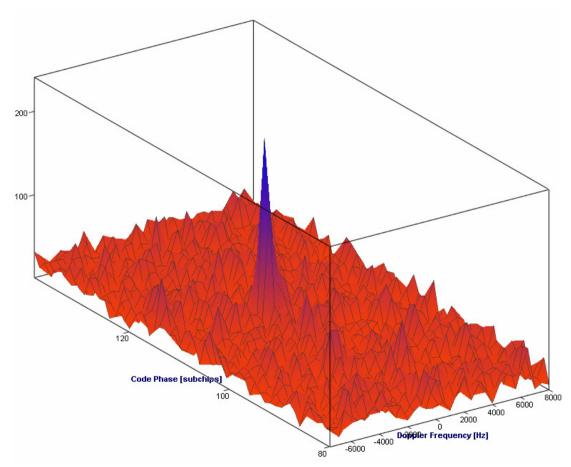
Stefan Wallner, José-Ángel Ávila-Rodríguez, Guenter W. Hein Institute of Geodesy and Navigation, University FAF Munich, Germany

CONTENTS

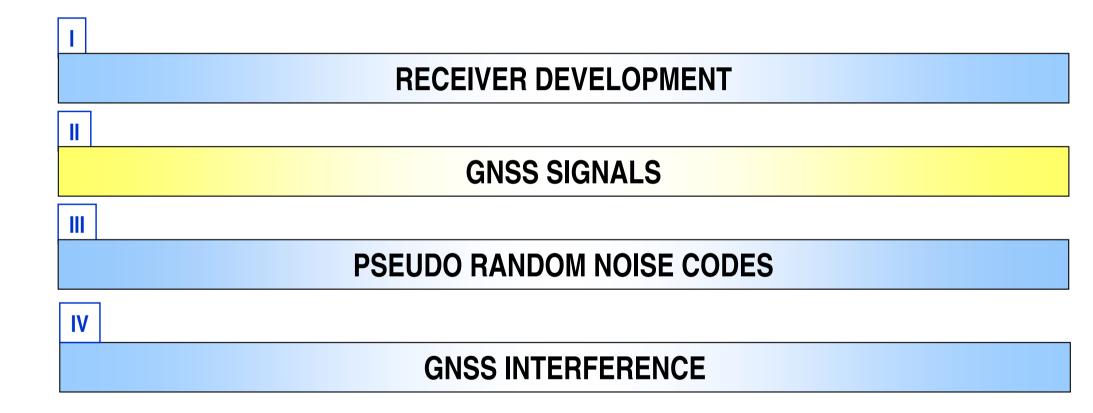


SOFTWARE GNSS RECEIVER - ipexSR

- ✓ High end, multi-frequency, real-time capable
- Civil signal tracking of all-in-view GPS/Galileo/SBAS satellites
- ✓ Development in C++ classes and modules
- To be run on conventional PC
- ✓ Input IF samples from
 - Triple frequency (L1/E1, L2, L5/E5a) USB Front-End
 - Data files in post-processing mode

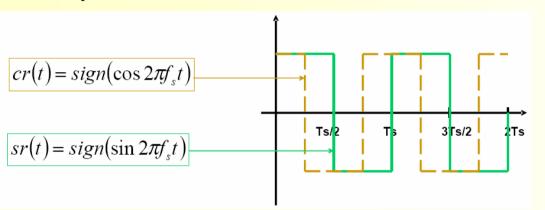

Frequency	Bandwidth	Sample Rate	ADC Res.
L1, E1	15/20 MHz	40.96 MHz	2/4 Bits
L2	15/20 MHz	40.96 MHz	2/4 Bits
L5, E5a	15/20 MHz	40.96 MHz	4 Bits

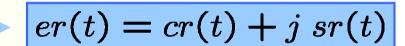
ARCHITECTURE - ACQUISITION


- ✓ Two acquisition procedures depending on available information
 - Acquisition by navigation solution
 - ▼ Two level FFT-based acquisition
- Acquisition of strong signals by conventional coherent integration
- ✓ High sensitivity acquisition
 - →Combination of coherent and non-coherent integration, including parallel interference cancellation

3D Acquisition plot generated by the software receiver when acquiring a GPS satellite.

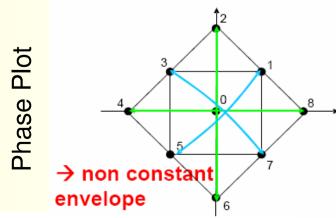
Institute of Geodesy and Navigation


CONTENTS

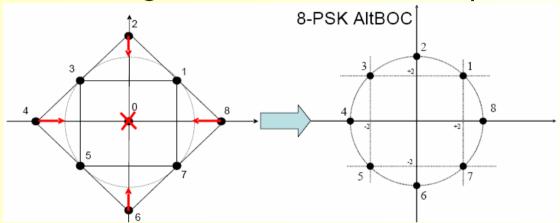


- ✓ Objectives of Alternative BOC (AltBOC) on E5a/b
 - Multiplexing of 2 or 4 navigation signal components each with own PRN code on 2 nearby frequencies
- ✓ Solution 1
 - ✓ Generation of 2 QPSK separately and combine them with OMUX
 - → Band limitation of OMUX removes high frequency component → loss of accuracy
- ✓ Solution 2
 - Combination of signals at base-band, up-conversion to mean frequency
 - → One carrier → phase coherency between two frequencies guaranteed
 - → One amplification chain
 - → Higher bandwidth → higher accuracy
 - Constant envelope modulation has to be assured

✓ Complex BOC subcarrier



4 component AltBOC


$$x(t) = (c_1(t) + c'_1(t)) er(t) + (c_2(t) + c'_2(t)) er^*(t)$$

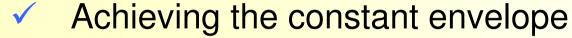
	Signal C1		-1	7	-1	-1	۲-	
	Signal C2		-1	-1	-1	-1	1	
	Signal C'1		-1	-1	1	1	۲	
	Signal C'2		-1	1	-1	-1	1	
	t mod Ts	[0, Ts/4[5	0	4	3	6	
		[Ts/4, Ts/2[1	8	0	7	0	:
		[Ts/2, 3Ts/4[1	0	8	7	2	
		[3Ts/4, Ts [5	4	0	3	0	

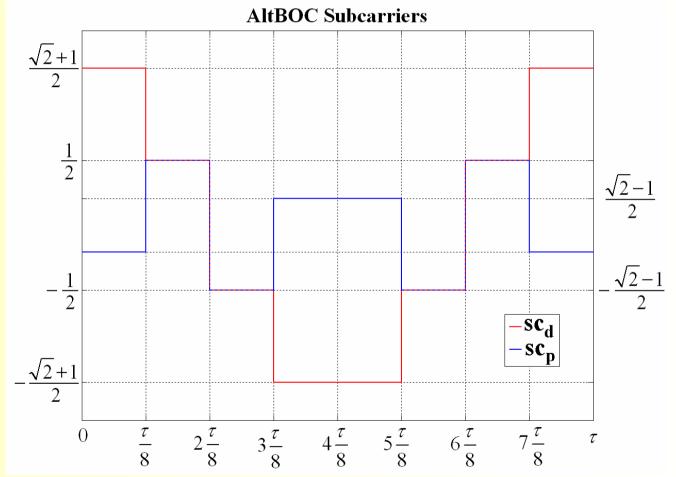
Modulation Table

Achieving the constant envelope

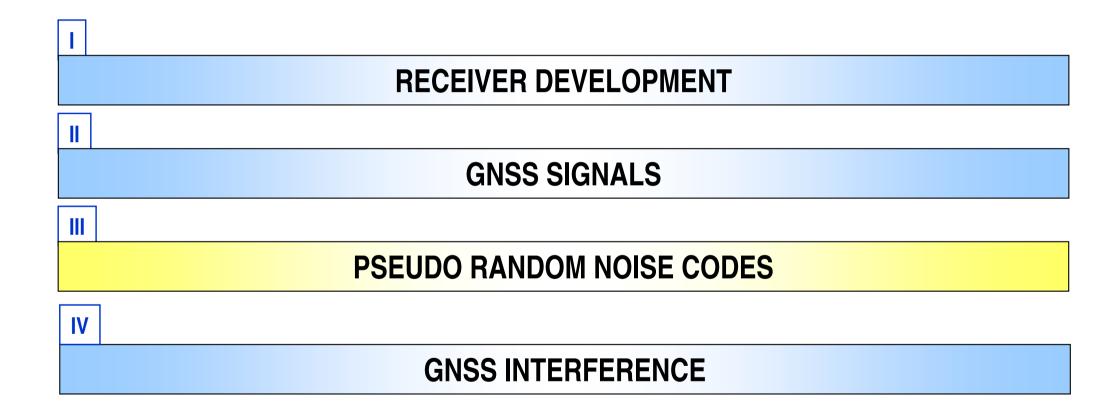
Constellation points

$$\exp\left(\frac{jk\pi}{4}\right), \ k \in \{1, \dots, 8\}$$


New signal description


$$x(t) = \frac{1}{2\sqrt{2}} \left[\frac{\left(c_1(t) + jc_1'(t)\right)er(t) + \left(c_2(t) + jc_2'(t)\right)er^*(t)}{\left(\bar{c}_1(t) + j\bar{c}_1'(t)\right)\bar{e}r(t) + \left(\bar{c}_2(t) + j\bar{c}_2'(t)\right)\bar{e}r^*(t)} \right]$$

$$er(t) = sc_d(t) + j \ sc_d(t - T_s/4)$$


$$e^{\overline{r}(t)} = sc_p(t) + j \ sc_p(t - T_s/4)$$

→ 4-level signal!

CONTENTS

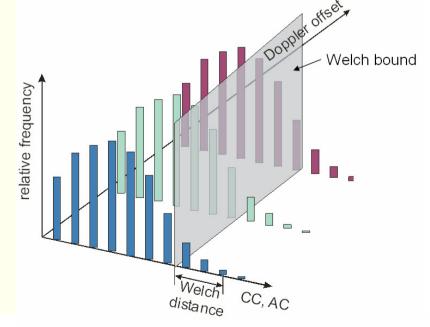
PSEUDO RANDOM NOISE CODES

- Pseudo Random Noise (PRN) codes are essential element in every CDMA based GNSS
- Keystone to distinguish one SV from another
- All currently implemented civilian codes based on Linear Feedback Shift Registers (LFSR)
 - → Identical approach as in 1st generation GPS
- Galileo E1 OS and GPS L1C are bringing up new code concepts
 - ✓ (Galileo E1 OS: random codes) ← Focus
 - ✓ GPS L1C: Weil-based codes

OPTIMIZATION CRITERIA

- Optimization for every receiver implementation and application not feasible
 - → Use code centric approach
- Code centric approach based on
 - Auto- and crosscorrelation
 - Concentration on (maximum) or distribution possible
- ✓ Consideration of
 → GPS a
 - Even and odd correlation (data bit or secondary code bit flip)
 - Doppler frequency offsets

Galileo approach

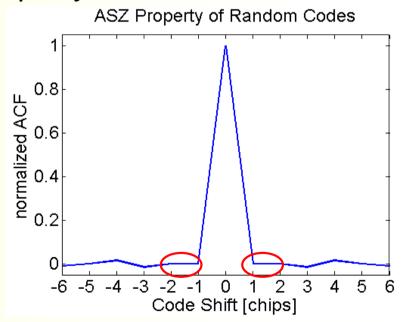

GALILEO CODE OPTIMIZATION CRITERIA

Correlation values compared against Welch-bound

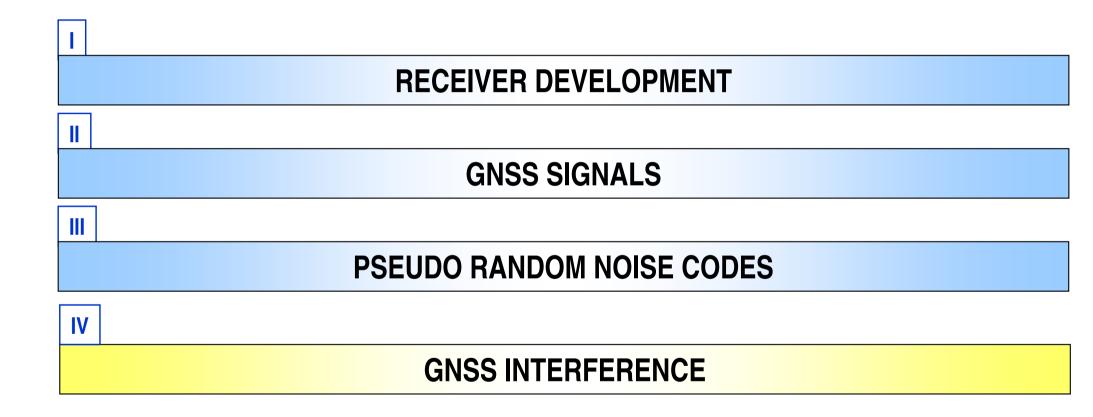
Welch Bound Φ_{min} is the theoretical minimum of correlation that can be obtained for a code length n within a set of M codes:

$$\Phi_{\mathsf{min}} = n \sqrt{\frac{M-1}{Mn-1}}$$

- every correlation value above Welch bound degrades performance
- → Criteria of Welch distance for autoand crosscorrelation considering Doppler dependency applied (slight modifications to achieve acquisition and tracking criteria)



GALILEO E1 OS / E6 CS CODE OPTIMIZATION


- ✓ Random codes (memory codes) for Galileo E1 OS and E6 CS
- Most flexible code generation and optimization approach
- Codes can be driven to fulfill special properties
 - Autocorrelation Sidelobe Zero (ASZ) property
 - ✓ Ideal or weakened balance

However

- Number of choices to set 0's and 1's unimaginably high
 - → Application of genetic algorithms for optimization

CONTENTS

SOURCES OF INTERFERENCE

- Interference introduced from external sources
 - Radar
 - ✓ DVB-T
 - ✓ DME, TACAN, JTADS
 - Unintentional interference

- Interference within GNSS
- Signal interference
- PRN code interference

Radio frequency compatibility

SIGNAL INTERFERENCE

- ✓ Intrasystem Interference
 - Within each system
- ✓ Intersystem Interference
 - Interference that a GNSS/RNSS will suffer due to other GNSS/RNSS, augmentation systems to be considered
 - ✓ Intersystem Interference too high
 - correct functioning of current working GNSS receivers could be affected if new GNSS is entering the stage

INTERFERENCE CRITERION $\Delta(C/N_0)_{eff}$

Degradation of C/N_0 due to intersystem interference

$$\Delta \left(\frac{C}{N_0}\right)_{\rm eff} [{\rm dB}] = 10 \log_{10} \left(1 + \frac{I_{\rm inter}}{N_0 + I_{\rm intra}} + \frac{I_{\rm inter}}{I_{\rm interop}}\right)$$

where:

$$I_{ ext{inter}} = rac{\sum\limits_{i=1}^{M_{ ext{inter}}}\sum\limits_{j=1}^{N_{ ext{inter}}}C_{j}^{i}\kappa_{js}^{i}}{\int_{-rac{eta_{r}}{2}}^{rac{eta_{r}}{2}}G_{s}(f+f_{ ext{dop}_{s}})\,\mathrm{d}f}$$

with Spectral Separation Coefficient (SSC):

$$\kappa_{js}^{i} = \int_{-\frac{\beta_r}{2}}^{\frac{\beta_r}{2}} G_j^i(f + f_{\mathsf{dop}_j}) G_s(f + f_{\mathsf{dop}_s}) \, \mathrm{d}f$$

Rec. power of signal i from SV j

Number of visible SV from non- N_{inter}

desired system

 M_{inter} Number of interfering signals from

non-desired system in scenario

PSD of desired signal

 G_j^i PSD of signal i from SV j

Front-end bandwidth

 N_0 Noise floor: -201.5 dBW/Hz

 f_{dop_j} Doppler frequency for SV j

 f_{dop_s} Doppler frequency of desired

> signal Institute of Geodesy and Navigation
>
> Institut for Endmessung und Navigation

INTERFERENCE CRITERION $\Delta(C/N_0)_{eff}$

Degradation of C/N_0 due to intersystem interference

$$\Delta \left(\frac{C}{N_0}\right)_{\rm eff} [{\rm dB}] = 10 \log_{10} \left(1 + \frac{I_{\rm inter}}{N_0 + I_{\rm intra} + I_{\rm interop}}\right)$$

where:

$$I_{ ext{intra}} = rac{\sum\limits_{i=1}^{M_{ ext{intra}}}\sum\limits_{j=1}^{N_{ ext{intra}}}C^i_j\kappa^i_{js}}{\int_{-rac{eta_r}{2}}^{rac{eta_r}{2}}G_s(f+f_{ ext{dop}_s})\,\mathrm{d}f}$$

with Spectral Separation Coefficient (SSC):

$$\kappa_{js}^{i} = \int_{-\frac{\beta_r}{2}}^{\frac{\beta_r}{2}} G_j^i(f + f_{\mathsf{dop}_j}) G_s(f + f_{\mathsf{dop}_s}) \, \mathrm{d}f$$

Rec. power of signal i from SV j

 N_{intra} Number of visible SV from

desired system

 M_{intra} Number of desired and interfering

signals from desired system

PSD of desired signal

 G_j^i PSD of signal *i* from SV *j*

Front-end bandwidth

 N_0 Noise floor: -201.5 dBW/Hz

 f_{dop_j} Doppler frequency for SV j

 f_{dop_s} Doppler frequency of desired

> signal Institute of Geodesy and Navigation
>
> Institut for Endmessung und Navigation

INTERFERENCE CRITERION $\Delta(C/N_0)_{eff}$

Degradation of C/N_0 due to intersystem interference

$$\Delta \left(\frac{C}{N_0}\right)_{\rm eff} [{\rm dB}] = 10 \log_{10} \left(1 + \frac{I_{\rm inter}}{N_0 + I_{\rm intra}} + \frac{I_{\rm inter}}{I_{\rm interop}}\right)$$

Where:
$$M_{ ext{interop}} N_{ ext{interop}} \sum_{i=1}^{N_{ ext{interop}}} \sum_{j=1}^{C_j^i \kappa_{js}^i} C_j^i \kappa_{js}^i$$

$$= \int_{-\frac{\beta_r}{2}}^{\frac{\beta_r}{2}} G_s(f + f_{ ext{dop}_s}) \, \mathrm{d}f$$

with Spectral Separation Coefficient (SSC):

$$\kappa_{js}^{i} = \int_{-\frac{\beta_r}{2}}^{\frac{\beta_r}{2}} G_j^i(f + f_{\mathsf{dop}_j}) G_s(f + f_{\mathsf{dop}_s}) \, \mathrm{d}f$$

Rec. power of signal i from SV j

Ninterop Number of visible SV from nondesired system

 M_{interop} Number of interoperable signals

from non-desired system

PSD of desired signal

 G_j^i PSD of signal i from SV j

Front-end bandwidth

 N_0 Noise floor: -201.5 dBW/Hz

 f_{dop_j} Doppler frequency for SV j

 f_{dop_s} Doppler frequency of desired

> Institute of Geodesy and Navigation
>
> Institut für Erdmessung und Navigation signal

INTERFERENCE CRITERION (C/N₀)_{eff}

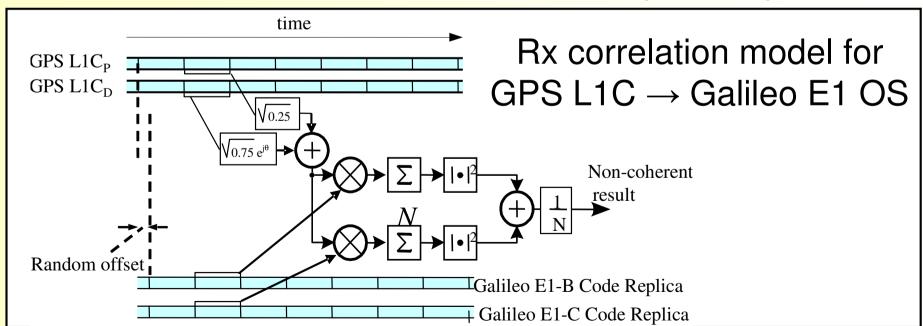
 \checkmark Min. effective C/N_0

$$\left(\frac{C}{N_0}\right)_{\text{eff}} [\text{dB} - \text{Hz}] = \frac{C}{N_0 + I_{\text{intra}} + I_{\text{inter}} + I_{\text{interop}}}$$

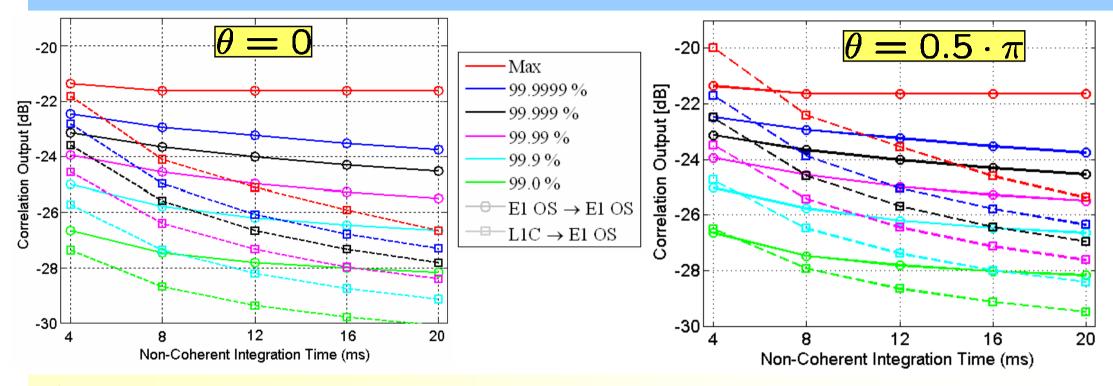
- Degradation of C/N₀ and min. effective C/N₀ are complementary criteria
 - ✓ Degradation of C/N₀ criteria limits impact of every single GNSS/RNSS
 - ✓ Min. effective C/N₀ criteria provides full picture of interference environment

INTERSYSTEM CROSSCORRELATION

- ✓ GPS L1C and Galileo E1 OS implementing both MBOC(6,1,1/11)
 - → Interoperability
- However: PRN codes could interfere with each other
- Different strategies
 - Pure code correlation
 - Rx (receiver based) code correlation



Further strategies to be investigated



RX CORRELATION APPROACH

- Receiver centric approach
- Non-coherent integrations
- Pre-correlation time identical to primary code duration
- Consideration of modulation scheme and power split

RX CORRELATION ONTO GALILEO E10S

- For more than 1 non-coherent integration max. and all percentiles of intersystem correlation smaller than intrasystem correlation
- Reason: due to different code length no superposition of correlation values in intersystem case

SUMMARY

Receiver development

Presentation of ipexSR Software receiver developed at Institute of Geodesy and Navigation, University FAF Munich

Signals

- ✓ AltBOC in E5 is Galileo's signal with largest bandwidth → best performance achievable
- Innovative multiplexing technique

PRN codes

Random codes and Weil codes completely new code design approaches

Interference

Assessment of signal and code interference extremely important with more and more GNSS/RNSS systems transmitting in identical frequency bands

RECEIVER DEVELOPMENT, SIGNALS, CODES AND INTERFERENCE

THANKS FOR YOUR ATTENTION !!

Contact: Stefan Wallner

stefan.wallner@unibw.de

University FAF Munich

Werner-Heisenberg-Weg 39

85577 Neubiberg

Germany

RECEIVER DEVELOPMENT, SIGNALS, CODES AND INTERFERENCE

Reference Documents

Receiver Development

Anghileri M. et al., "Performance Evaluation of a Multi-frequency GPS/Galileo/SBAS Software Receiver", Proceedings of ION GNSS 2007, 25-28 September 2007, Fort Worth, Texas, USA

Signals

✓ Rebeyrol E. et al., "BOC Power Spectrum Densities", Proceedings of ION NTM 2005, 24-26 January 2005, Long Beach, California, USA

PRN Codes

- ✓ Wallner S. et al., "Galileo E1 OS and GPS L1C Pseudo Random Noise Codes Requirements, Generation, Optimization and Comparison", Proceedings of ION GNSS 2007, 25-28 September 2007, Fort Worth, Texas, USA
- ✓ **Soualle F. et al.**, "Spreading Code Selection Criteria for the Future GNSS Galileo", Proceedings of GNSS 2005, 19-22 July 2005, Munich, Germany

Interference

- ▼ Titus B.M. et al., "Intersystem and Intrasystem Interference Analysis Methodology", Proceedings of ION GPS 2003, 09-12 September 2003, Portland, Oregon, USA
- ✓ Wallner S. et al., "Interference Calculation between GPS and Galileo", Proceedings of ION GNSS 2005, 13-16 September 2005, Long Beach, California, USA